Magnesium for Anxiety and Panic, Does it Help?

anxiety panic and magnesium therapy
By Alison Smith Ph.D.

Magnesium for anxiety

A 2013 Global Burden of Disease study (Mathers et al., 2001) found mental disorders to be among the primary causes of disability worldwide. According to Baxter et al. (2012), 7.3% of the total global population, that is everyone in 14, suffers from an anxiety disorder. In the 2012 Canadian Community Health Survey, Statistics Canada reports 2.4 million Canadians to suffer from generalized anxiety disorder alone, with females (3.2%) affected more than males (2.0%) (Pearson et al., 2013). However, only 37% of Canadians with an anxiety disorder actually seek treatment (Roberge et al., 2011), pointing to the need to educate Canadians about effective strategies to treat anxiety and how to access them.

Defining Anxiety and Panic Attacks

Anxiety disorders are those that feature panic and anxiety. Panic is a fear response to imminent danger or a perceived threat, while anxiety is the anticipation of future danger (American Psychiatric Association, 2013). Panic and fear are associated with sympathetic nervous system arousal, the fight-or-flight response, thoughts of an imminent threat, and escape behaviours. Anxiety, on the other hand, is associated more with hypervigilance, muscle tension, and the preparation to flee the scene because of perceived dangers (American Psychiatric Association, 2013). Anxiety disorders include: generalized anxiety disorder, panic disorder, agoraphobia, social anxiety disorder, and phobias (Canadian Mental Health Association, 2013), and treatments include pharmacotherapy and cognitive therapy; nonetheless, natural treatments like magnesium are shown to have anxiolytic effects.

How Magnesium Mediates Anxiety

Magnesium is the second most abundant cation, intracellularly, and the fourth most abundant cation in the whole body (Swaminathan, 2003). It acts as a cofactor in over 300 enzymatic reactions, including the maintenance of healthy brain function and mood (Wester, 1987; Sartori et al., 2012). Studies show magnesium plays a role in keeping anxiety at bay through its modulation of neuronal receptors, neurotransmitters, and hormonal activity within anxiety-related brain regions, in addition to influencing the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the main stress response system (Sartori et al., 2012). Brain areas associated with anxiety include the amygdala, the hippocampus, and the ventromedial prefrontal cortex (Abumaria et al., 2011). The neurophysiological etiology of anxiety is highly complex and not entirely understood; however, rodent experiments have provided some useful details about the role magnesium plays in the pathophysiology of anxiety. For example, under normal, healthy circumstances, N-Methyl-D-Aspartate (NMDA) receptors in brain regions associated with anxiety are typically inhibited by the presence of magnesium in the extracellular fluids. It’s as if magnesium is standing at a gate guarding against NMDA receptor stimulation (Lezhitsa et al., 2011). NMDA receptors are stimulated by the excitatory neurotransmitter, glutamate, which is the main neurotransmitter responsible for healthy and unhealthy nervous system function (Newcomer et al., 2000). An adequate concentration of magnesium in the extracellular fluids is crucial to keep NMDA receptor activation stable. Excessive NMDA receptor activation by glutamate, causes hyperstimulation, excitotoxicity, and neuronal cell death, leading to cognitive and mood disorders like anxiety (Newcomer et al., 2000). Magnesium deficiency resulting in hyperexcitability of NMDA receptors has been linked as one of the physiological origins of anxiety disorders (LeDoux, 2007; Grober et al., 2015; Poleszak et al., 2004). As magnesium inhibits NMDA receptor activation, it also simultaneously promotes Gamma-Amino-Butyric Acid-A (GABAA) receptor function (Poleszak, 2008). GABAA receptors are stimulated by GABA, an inhibitory neurotransmitter that promotes calm and relaxation. Once GABAA receptors are stimulated, chloride (an inhibitory anion) surges into the neuron thus causing hyperpolarization: a state that helps to prevent neuronal activation (Kandel et al., 2000). In 2008, Poleszak demonstrated that magnesium provides anxiolytic effects not only through NMDA receptor inhibition (Poleszak et al., 2004), but through the potentiation of GABAA receptors as well. Magnesium helps to bind GABA to the GABAA receptor thus helping to prevent excessive neuronal stimulation that can result in anxiety (Moykkynen et al., 2001). In addition to receptor stimulation, magnesium also modulates hormonal activity associated with stress, mood, and anxiety. Intense stress and anxiety can trigger the fight-or-flight response: a state associated with hypothalamic-pituitary-adrenal (HPA) axis activation and the secretion of stress-related hormones (Smith & Vale, 2006). Magnesium suppresses the release of stress hormones like adrenocorticotropin hormone (ACTH) from the pituitary gland and the secretion of cortisol and epinephrine from the adrenal glands — the two main hormones responsible for the physiological cascade of the fight-or-flight response (Sartori et al., 2012). Essentially, when it comes to the stress response, magnesium acts like a warmly welcomed chill-pill. (Check out our anti-anxiety smoothie recipe)

The Cortical Landscape of Anxiety

Brain regions most associated with the state of anxiety include the amygdala, the hippocampus, and the ventromedial prefrontal cortex (VMPFC). Magnesium plays an important role in the function and modulation of each region.

The Amygdala

The amygdala is an almond-shaped structure located near the centre of the brain, within the medial temporal lobe. There are two amygdalas: one located in each hemisphere. Each amygdala is made up of separate subregions known as nuclei that connect to distinct cortical and subcortical circuitry (LeDoux, 2007; Pittman & Karle, 2015). The amygdala is most associated with the emotional state of fear. In fact, increased activation within the amygdala generates fear responses to non-threatening stimuli (Guyer et al., 2008). During fear conditioning when repeated events trigger a learned fear response, neuronal plasticity occurs within the lateral amygdala thus forming fearful memories (LeDoux, 2007). Plasticity is the neuronal process that underlies learning. It involves the rewiring of neuronal connections and synaptic activity to form new functional memories (Kandel et al., 2000). From a basic neurophysiological standpoint, magnesium plays a critical role in plasticity and the learning of new fearful memories within the amygdala (LeDoux, 2007). When a person experiences something that their conscious or subconscious deems as dangerous, this triggers the release of the neurotransmitter glutamate within the lateral amygdala, which then stimulates NMDA receptors, thus exciting neuronal cells through a process called depolarization. Typically, magnesium within the extracellular fluids blocks glutamate and NMDA receptor activation; however, the added shock of the perceived danger causes the magnesium to displace from its blocking position, thus allowing NMDA receptor excitation. If this excitation happens repeatedly, over and over again, plasticity in the lateral amygdala occurs and a new fearful memory is learned (LeDoux, 2007). In essence, the amygdala houses the circuits for learned fear responses and drives the behavioural reactions to that fear (Abumaria et al., 2011). Developing fearful memories and their related safety behaviours are crucial for survival. As humans we need to recognize dangers and react to them — an ability that is definitely an evolutionary advantage (Abumaria et al., 2011). Our cavemen ancestors needed to recognize and escape from predatory animals and to spot poisonous plants. Without the amygdala and the ability to form fearful, yet informative, memories and reactions, survival would only become precarious. If you remove the amygdala, the fear response disappears along with thoughts of self-protection (LeDoux, 2007). However, experiencing excessive fear associated with objects or situations that are not innately dangerous can develop into a chronic anxiety disorder that can be resistant or remitting to pharmacological treatment or cognitive therapy (Abumaria et al., 2011).

The Hippocampus

The hippocampus is a part of the hippocampal formation located within the medial temporal lobe in the same vicinity as the amygdala. And, just like the amygdala, there are two hippocampal formations within each hemisphere (Andersen, 2011). Among its many functions, the hippocampus helps us to form fearful memories within the amygdala by providing spatial and temporal information about the stimulus that is deemed dangerous. The hippocampus also plays a supportive role in the process of learning new, healthy memories that inhibit the fearful memories stored in the lateral amygdala — this process is known as extinction. In terms of extinction, the amygdala generates and houses fearful memories, while the hippocampus and VMPFC form new memories that govern the expression of the fear response associated with the fearful memories (Abumaria et al., 2011). Slutsky et al. (2010) reported that increasing magnesium concentration within the brain by administering magnesium L-threonate (MgT) to rodents enhanced learning-related plasticity within the hippocampus. Since the hippocampus plays a role in the extinction of fearful memories, supplementing with magnesium might be a useful strategy to aid extinction, enhance memory, and prevent age-related cognitive and memory decline (Slutsky et al., 2010).

The Prefrontal Cortex

The prefrontal cortex (PFC), unlike the amygdala and hippocampus, is located within the anterior portion of the bilateral frontal lobes on the surface of the brain. It governs highly complex goal-directed behaviours, frequently classified as ‘executive functions’ (Funahashi & Andreau, 2013). The VMPFC has direct connections with the amygdala, and dysfunction within this connection can cause an anxiety disorder (Guyer et al., 2008). Since the VMPFC, with the aid of the hippocampus, creates newly learned memories that can extinguish fearful memories housed within the amygdala, finding a way to stimulate learning-related plasticity within these regions would be an advantage and potentially helpful to those suffering from an anxiety disorder (Abumaria et al., 2011). From a natural medicine perspective, preliminary research in the rodent model shows administering oral magnesium supplementation, in the form of magnesium Lthreonate (MgT), can enhance the formation of extinction memories not only within the hippocampus (Slutsky et al., 2008), but the VMPFC as well (Abumaria et al., 2011; Fitzgerald et al., 2013). Abumaria and colleagues (2011) demonstrated that administering MgT improved working memory, learning ability, and short and long-term memory in the rodent model. Is it then possible for MgT to enhance memory production and extinction in the VMPFC and hippocampus of humans to hasten anxiety disorder treatment and recovery? That is a question that still needs to be explored.

Anxiety and Magnesium Deficiency

Despite the critical role that minerals play in healthy brain function, most Canadian diets are sorely deficient in essential minerals, thus predisposing a significant portion of the population to anxiety-related disorders, not to mention other mental health issues (Health Canada, 2013). According to Health Canada, 45% of Canadians fail to consume the minimum daily requirement of 250 mg of magnesium (Health Canada, 2013; Canadian Food Inspection Agency, 2016). That’s a shocking 10.4 million Canadians at risk of developing magnesium deficiency and subsequent anxiety disorders. To make matters worse, Canadians who are chronically magnesium deficient cannot simply add additional magnesium-rich foods to their diet hoping to solve their hypomagnesemia. In the last 100 years, mineral concentration in agricultural soil has significantly decreased, making it difficult for people to consume adequate amounts of minerals like magnesium from harvested food (Marler & Wallin, 2006). Therefore, in moderate to severe cases of magnesium deficiency, supplementation is the only course of treatment (Durlach et al., 1994). Inadequate blood magnesium concentration triggers symptoms such as anxiety, nervousness, agitation, low-stress tolerance, weakness, and depression (Grober et al., 2015). In rodent experiments, brain and blood plasma levels of magnesium are significantly correlated with anxiety behaviours (Laarakker et al., 2011), and magnesium supplementation has been shown to have anxiolytic and antidepressant effects by acting as an NMDA receptor antagonist, as long as magnesium blood serum concentration was raised by at least 58% (Poleszak et al., 2004).

Treating Anxiety with Magnesium

Taking all of the information discussed into consideration, it is scientifically evident that magnesium supplementation has the potential to reduce anxiety by: (1) inhibiting NMDA receptor activation (Lezhitsa et al., 2011), (2) potentiating GABAA receptor activation (Moykkynen et al., 2001), (3) reducing the secretion of ACTH, cortisol, and epinephrine from the pituitary and adrenal glands respectively (Sartori et al., 2012), and (4) enhancing neuronal plasticity for new extinction memories within the hippocampus and VMPFC (Poleszak, 2004 & 2008). To date, cognitive behavioural therapy is considered the most effective form of treatment for anxiety disorders (Rector et al., 2016). Pharmacotherapy treatments for clinical anxiety (antidepressants, serotonin-specific reuptake inhibitors (SSRIs), and benzodiazepines) are available, but they can come with a host of negative side effects like decreased alertness, dependency, sexual dysfunction, and even suicidal thoughts (Lakhan & Vieira, 2010). For some, pharmacotherapy simply is not an option: they would prefer a more natural solution. Therefore, studying the efficacy of natural treatments like magnesium has great clinical significance (Boyle et al., 2017). Several human studies have investigated the effects of magnesium in combination with zinc, calcium, or plant extracts, demonstrating that combined therapy is effective to reduce anxiety (Carroll et al., 2000; De Souza et al., 2000; Hanus et al., 2004). However, to get a real sense of the effectiveness of magnesium, it would be prudent for researchers to focus on the mono-mineral rather than in combination. Experiments in the rodent population have shown significant anxiolytic effects using the following magnesium derivations: mg-aspartate, mg-chloride, mg-L-threonate, mg-lactate, mg-oxide, or mg-pyroglutamate (Abumaria et al., 2011; Lezhitsa et al., 2011); however, there are no studies to date that have definitively determined which form of magnesium is the best to reduce anxiety.


  1. Abumaria, N., Yin, B., Zhang, L., Li, X. Y., Chen, T., Descalzi, G., … & Zhuo, M. (2011). Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala. Journal of Neuroscience, 31(42), 14871-14881. [PubMed]
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author. [PMC]
  3. Andersen, P. (Ed.). (2007). The hippocampus book. Oxford University Press. [Oxford]
  4. Baxter, A. J., Scott, K. M., Vos, T., & Whiteford, H. A. (2013). Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychological medicine, 43(5), 897-910. [PubMed]
  5. Boyle, N. B., Lawton, C., & Dye, L. (2017). The Effects of Magnesium Supplementation on Subjective Anxiety and Stress—A Systematic Review. Nutrients, 9(5), 429. [PMC]
  6. Canadian Food Inspection Agency. (2016 January 12). Information within the nutrition facts table: Daily intake. Retrieved from:
  7. Canadian Mental Health Association. (2013 September). Anxiety disorders. Retrieved from:
  8. Carroll, D., Ring, C., Suter, M., & Willemsen, G. (2000). The effects of an oral multivitamin combination with calcium, magnesium, and zinc on psychological well-being in healthy young male volunteers: a double-blind placebo-controlled trial. Psychopharmacology, 150(2), 220-225. [PubMed]
  9. De Souza, M. C., Walker, A. F., Robinson, P. A., & Bolland, K. (2000). A synergistic effect of a daily supplement for 1 month of 200 mg magnesium plus 50 mg vitamin B6 for the relief of anxiety-related premenstrual symptoms: a randomized, double-blind, crossover study. Journal of women’s health & gender-based medicine, 9(2), 131-139. [PubMed]
  10. Durlach, J., Durlach, V., Bac, P., Bara, M., & Guiet-Bara, A. (1994). Magnesium and therapeutics. Magnesium Research, 7(3-4), 313-328. [Europe PMC]
  11. Fitzgerald, P. J., Seemann, J. R., & Maren, S. (2014). Can fear extinction be enhanced? A review of pharmacological and behavioural findings. Brain research bulletin, 105, 46-60. [PMC]
  12. Funahashi, S., & Andreau, J. M. (2013). Prefrontal cortex and neural mechanisms of executive function. Journal of Physiology-Paris, 107(6), 471-482. [PubMed]
  13. Gröber, U., Schmidt, J., & Kisters, K. (2015). Magnesium in prevention and therapy. Nutrients, 7(9), 8199-8226. [PubMed]
  14. Guyer, A. E., Lau, J. Y., McClure-Tone, E. B., Parrish, J., Shiffrin, N. D., Reynolds, R. C., … & Ernst, M. (2008). Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Archives of general psychiatry, 65(11), 1303-1312. [PubMed]
  15. Hanus, M., Lafon, J., & Mathieu, M. (2004). Double-blind, randomized, placebo-controlled study to evaluate the efficacy and safety of a fixed combination containing two plant extracts (Crataegus oxyacantha and Eschscholtzia californica) and magnesium in mild-to-moderate anxiety disorders. Current medical research and opinion, 20(1), 63-71. [PubMed]
  16. Health Canada. (2013 June 24). Percentage of adults with a usual intake of magnesium below the estimated average requirement (EAR) in Canada. Retrieved from:
  17. Kandel, E.R., Schwartz, J.H., & Jessell, T.M. (2000). Principles of Neural Science (4th ed.). New York, NY: McGraw-Hill. [AccessNeurology]
  18. Laarakker, M. C., van Lith, H. A., & Ohl, F. (2011). Behavioural characterization of A/J and C57BL/6J mice using a multidimensional test: association between blood plasma and brain magnesium-ion concentration with anxiety. Physiology & behaviour, 102(2), 205-219. [PubMed]
  19. Lakhan, S. E., & Vieira, K. F. (2010). Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutrition Journal, 9(1), 42. [PubMed]
  20. LeDoux, J. (2007). The amygdala. Current Biology, 17(20), R868-R874. [PubMed]
  21. Lezhitsa, I. N., Spasov, A. A., Kharitonova, M. V., & Kravchenko, M. S. (2011). Effect of magnesium chloride on psychomotor activity, emotional status, and acute behavioural responses to clonidine, d-amphetamine, arecoline, nicotine, apomorphine, and L-5-hydroxytryptophan. Nutritional neuroscience, 14(1), 10-24. [PubMed]
  22. Marler, J. B. & Wallin, J. R. (2006). Human health, the nutritional quality of harvested food and sustainable farming systems. Nutrition Security Institute, USA. [PDF]
  23. Mathers, C. D., Lopez, A. D., & Murray, C. J. (2006). The burden of disease and mortality by condition: data, methods and results for 2001. Global burden of disease and risk factors, 45, 88. [PubMed]
  24. Möykkynen, T., Uusi-Oukari, M., Heikkilä, J., Lovinger, D. M., Lüddens, H., & Korpi, E. R. (2001). Magnesium potentiation of the function of native and recombinant GABAA receptors. Neuroreport, 12(10), 2175-2179. [Europe PMC]
  25. Newcomer, J.W., Farber, N.B., & Olney, J.W. (2000). NMDA receptor function, memory, and brain ageing. Dialogues in clinical neuroscience, 2(3), 219. [PubMed]
  26. Pearson, C., Janz, T. & Ali, J. (2013). Mental and substance use disorders in Canada. Health at a Glance. September. Statistics Canada Catalogue no. 82-624-X. [PDF] [Statistics Canada]
  27. Pittman, C. M., & Karle, E. M. (2015). Rewire Your Anxious Brain: How to Use the Neuroscience of Fear to End Anxiety, Panic, and Worry. New Harbinger Publications. [New Harbinger Publications]
  28. Poleszak, E., Szewczyk, B., Kędzierska, E., Wlaź, P., Pilc, A., & Nowak, G. (2004). Antidepressant-and anxiolytic-like activity of magnesium in mice. Pharmacology Biochemistry and Behavior, 78(1), 7-12. [PubMed]
  29. Poleszak, E. (2008). Benzodiazepine/GABAA receptors are involved in magnesium-induced anxiolytic-like behaviour in mice. Pharmacological Reports, 60(4), 483. [PubMed]
  30. Rector, N. A., Laposa, J. M., Kitchen, K., Bourdeau, D., & Joseph-Massiah, L. (2016). Anxiety disorders: An information guide. Centre for Addiction and Mental Health. [PDF]
  31. Roberge, P., Fournier, L., Duhoux, A., Nguyen, C. T., & Smolders, M. (2011). Mental health service use and treatment adequacy for anxiety disorders in Canada. Social psychiatry and psychiatric epidemiology, 46(4), 321-330. [PsycNet APA]
  32. Sartori, S. B., Whittle, N., Hetzenauer, A. & Singewald, N. (2012). Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment. Neuropharmacology, 62(1), 304-312. [PubMed]
  33. Slutsky, I., Abumaria, N., Wu, L. J., Huang, C., Zhang, L., Li, B., … & Tonegawa, S. (2010). Enhancement of learning and memory by elevating brain magnesium. Neuron, 65(2), 165-177. [PubMed]
  34. Swaminathan, R. (2003). Magnesium metabolism and its disorders. The Clinical Biochemist Reviews, 24(2), 47. [PMC]
  35. Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in clinical neuroscience, 8(4), 383. [PMC]
  36. Wester, P. (1987). Magnesium. American Journal of Clinical Nutrition, 45, 1305–1312 [AJCN]

Magnesium and Anxiety FAQs

A person with anxiety should not take magnesium carbonate since it is not well absorbed and can cause diarrhea. We recommend magnesium citrate because it is highly absorbable and will not cause loose stools.

Magnesium oil, also referred to as magnesium liquid, is also great when applied topically to the skin, or used in baths.

Yes. In fact, magnesium is a natural anti-depressant and can be as effective as prescription medications for treating anxiety with fewer side effects.

The general dosage is around 300mg of elemental magnesium per day. It’s not necessary to take it all at once since the body only absorbs a certain amount at a time. Magnesium levels can be easily depleted through exercise or saunas so you may want to supplement with additional magnesium after those activities.

Side effects from taking too much magnesium are rare unless one has impaired kidney function or severe bowel disease such as Crohn’s disease or irritable bowel syndrome (IBS). In these cases, lower doses should be consumed.

Taking magnesium before bedtime can help reduce anxiety and improve sleep. Magnesium is very relaxing and calming to the nervous system and will help your body relax into a restful night sleep.

Due to its calming effects, taking magnesium also reduces stress and irritability, while boosting energy levels at the same time!

Yes. Magnesium calms the nervous system, which in turn reduces anxiety and irritability. Magnesium also restores healthy brain function, encouraging clear thinking and enhancing relaxation in the body.

Absolutely yes! The few times there have been issues with magnesium toxicity it has always involved impaired kidney function or bowel disease that prevents proper absorption of this mineral.

Taking too much magnesium can result in diarrhea so start slowly at a low dose then increase if needed. Overdosing on magnesium is extremely rare unless you are taking supplements containing many more milligrams than what’s recommended. Natural Calm Magnesium citrate contains 410 mg per (adult) serving size which is the Recommended Daily Allowance of magnesium (RDA).

Share on facebook
Share on twitter
Share on linkedin
Share on pinterest
Share on facebook
Share on facebook
Share on twitter
Share on linkedin
Share on email
Get the best of the
Stay Calm blog sent to your inbox